
Coverage

 Introduction to real-time systems

 Performance measures

 Issues in real time computing

 Task allocation and scheduling techniques

 Power and energy issues

 Communication algorithms

 Fault tolerance and reliability evaluation

 Clock synchronization

Today’s Topics

 What is a real-time system?

» General characteristics

» Hard and soft real-time systems

 Performance Measures

» Why are they important?

» For general-purpose systems

» For real-time systems

 Uniprocessor task scheduling

What is a Real-Time System?

 Any system in which a deadline plays a central

role in its perceived performance

» But timely response is important for general-purpose

systems, too!

» There is no hard-and-fast demarcation between a real-

time system and a general-purpose system

» Systems in the control loop are always real-time

Introduction to Real-Time Systems

What is a Real-Time System?

Is defined as a system in which the time where the outputs are

produced is significant (within specified bounds or

deadlines)

.

RTS
Sensor Data

Commands

Actuator Outputs

Displays

Correctness depends on output values and the time at which

 the inputs are processed and the outputs are produced

Typical Real-Time System

Controlling

System
Environment

sensor

sensor

sensor

sensor

actuator

actuator

actuator

actuator

Controlled System Operator Interface

Types of RTS

 Hard Real-Time Systems

» Missing a deadline (or series of deadlines) can cause a

significant loss to the application.

» Examples: Fly-by-wire, power-plant, and grid control

 Soft Real-Time Systems

» Missing a deadline causes the quality of service to

degrade, but nothing terrible happens

» Examples: Video-on-demand, teleconferencing

Example: Fly-by-wire

 Used initially in military aircraft

» Dynamics time-constants are too small for humans to

be effective controllers

» Philosophy:

 Pilot sets policy

 Computer carries out low-level actions to implement that

policy

» If too many deadlines are missed in a row, the aircraft

can crash

Feedback Loop

(From C. M. Krishna & K. G. Shin: NASA Con. Report 3807, 1984)

Impact of Feedback Delay

(Simulation Example)
Elevator Deflections During Landing

Issues in real time computing

 Real time response

 Recovering from failures

 Working with distributed architecture

 Asynchronous communication

 Race conditions and timing

Scheduling RT Tasks with FT Requirement

PB-based Fault-Tolerance

 Space exclusion – primary and backup scheduled on two

different processors.

 Time exclusion – primary and backup should not overlap

in execution.

Variants of PB-based Scheduling

» PB-Exclusive – Both time and space exclusion

» PB-Concurrent – Space exclusion, but concurrent execution

» PB-Overlap – Space exclusion, but overlap in execution

Variants of PB-scheduling: Example

B1

P2

Process

or#1

B2

Process

or#2

Process

or#3

P1 P3
Process

or#0

B3

PB-

OVERLAP

PB-

CONCURRENT

PB-EXCLUSIVE

Scheduling RT Tasks with FT Req. (contd.)

 Each of the above three schemes has merits under certain

workload and fault scenarios.

» PB-Concurrent: at high fault rates, tight deadlines

» PB-exclusive: at low fault rates, relaxed deadlines, high resource

needs

 Generalized scheme

» That adapts (estimating) the “primary-backup overlap interval”
based on task parameters (e.g., deadline) and fault rate has the

potential to offer the best schedulability under all scenarios.

Schedulability-Reliability Tradeoff

 Too much redundancy increases reliability, but it could

potentially decrease the schedulability.

 Too little redundancy decreases reliability, but increases

schedulability

 Also, designing and managing redundancy incurs

additional cost, time, space, and power consumption

 Therefore, appropriate use of redundancy is important

Schedulability Enhancement Techniques in PB-based FT

scheduling

 Backup overloading

» Two backups can be scheduled in a overlapping manner if their
primaries achieve space exclusion.

» Assumes, at most only one fault at a given time, i.e., before the
second fault, the first fault is recovered.

 Flexible overloading (static-grouping)

» Partition the processors into groups

» Schedule the primary and its backup in the same group

 If primary is scheduled in group 1, its backup must also be scheduled
in the group exploiting the backup overloading

Backup overloading: example

B1

P2

B2

Process

or#1

Process

or#2

P1 Process

or#0

Space

exclusi

ve

primar

ies
Backups

scheduled

in

overlapping

manner on

the same

processor

P3

B3

P4

P4

Flexible overloading- details

 In flexible overloading, all “m” processors are partitioned
into different groups

 Rules
» Every processor is a member of exactly one group

» For backup overloading to take place in a group, it must
have at least three processors

» The size of each group is the same (except for one
group, when (m/gsize) is not an integer)

Flexible overloading: example

Process

or#1

P1 Process

or#0
P2

B1

Process

or#2

B2

Process

or#4

P3 Process

or#3
P4

Process

or#5

B3
B4

Backup

overload

ing

within

the

group
Backup

overload

ing

within

the

group

Distance concept: details

 Distance concept – the relative position of a primary task

and its backup task in the task queue

 For a given set of “N” active tasks and a given distance of

“d”

For all tasks, Ti

» Distance (Pri, Bki) is equal to

 d for the (N – (N mod d)) tasks

 N mod d for the (N mod d) tasks

Distance concept: example

P1 P2 P3 B1 B2 B3 P4 B4

•N= 4

•d = 3

P1 P2 B1 B2 P3 P4 B3 B4

•N= 4

•d = 2

The distance concept

introduces a tradeoff between

performance and fault

tolerance in the myopic

algorithm.

Distance should be

appropriately chosen. The

distance should be neither too

low nor too high

Distance – some implications

» Backup postponement

 If backup task is too closer (in queue position) relative to its
primary, holes get created in the schedule, resulting in lower
schedulability.

» Forced backtrack

 If backup task is too far (in queue position) relative to its
primary, missing the deadlines of backup could happen which
would result in backtrack.

Performability measures

 Which is better? High schedulability or high relaibility

 Overall system metric is required

 Performability metrics combine schedulability and

reliability into a single metric that captures the overall

system goal

 Goal: Determining Redundancy level to maximize the

performance index (PI)

Determining Redundancy Levels (contd.)

 Performance index (PI) is a measure that captures both performance and
reliability requirements

 PI is defined as follows: For a task Ti,

PIi = Vi * Ri – Pi * Fi if Ti is guaranteed

 -Qi if Ti is not guaranteed

Where,
Vi = reward if Ti completes successfully

Ri = reliability of a task (1 – Fi)

Fi = Failure probability

Pi = penalty if Ti fails after being guaranteed

Qi = if Ti has not been guaranteed

Determining Redundancy Levels

 Goal:

Given the relevant parameters for each of the “n” tasks to

be scheduled on a set of “m” processors, the goal is to

determine the appropriate redundancy levels for each

task in order to maximize the total PI.

 Let Ri be the reliability of the task with one version, the

reliability of the task with “n” versions is given by

 1 – (1 - Ri)n

Determining Redundancy Levels: example

Task (Ti) Task attributes Penalty/reward

T1, T2, T3, T4 Ri = 0, Ci = 10,

Di = 10

Vi = 10, Pi = 100,

Qi = 1

U PI = ∑ PIi

1 4 (10 * 0.9 – 100 * 0.1) = -4

2 2(10 * 0.99 – 100 * 0.01) - 2 = 16

3 1(10 * 0.999 – 100 * 0.001) – 3 = 7

4 1(10 *0.9999 – 100 * 0.0001) – 3 = 7

Calculations

Given task-set

U: redundancy level

PI is

maximum

at u = 2.

Therefore,

a

redundancy

level of 2 is

optimal

Fault-tolerance -- conclusions

 Dependability concepts

 Fault-tolerant design techniques

 Fault-tolerant scheduling

» Primary-backup scheduling

» Schedulability enhancement techniques

» Redundancy level determination

Performance Measures

 Traditional Measures

» Throughput: Average number of instructions processed

per second

» Availability: Fraction of time for which the system is

up

» Reliability: Probability that the system will remain up

throughout a designated interval

Special-Purpose Measure

 Performability

» Published by John Meyer in 1980

» Identify accomplishment levels, {A0, A1, A2, …, An},

 for the application

» Determine the probability, P(Ai), that the real-time

system will be able to perform in such a way that Ai

will be accomplished

» Performability is the vector (P(A0), P(A1), …, P(An))

» Application-focused measure

Task Allocation and Scheduling

 How to assign tasks to processors and to schedule

them in such a way that deadlines are met

 Our initial focus: uniprocessor task scheduling

Uniprocessor Task Scheduling

 Initial Assumptions:

» Each task is periodic

» Periods of different tasks may be different

» Worst-case task execution times are known

» Relative deadline of a task is equal to its period

» No dependencies between tasks: they are independent

» Only resource constraint considered is execution time

» No critical sections

» Preemption costs are negligible

» Tasks must be completed for output to have any value

Standard Scheduling Algorithms

 Rate-Monotonic (RM) Algorithm:

» Static priority

» Higher-frequency tasks have higher priority

 Earliest-Deadline First (EDF) Algorithm:

» Dynamic priority

» Task with the earliest absolute deadline has highest

priority

Rate Monotonic Algorithm

 Example

 Schedulability criteria:

» Sufficiency condition (Liu & Layland, 1973)

» Necessary & sufficient conditions (Joseph & Pandya,

1986; Lehoczky, Sha, Ding 1989)

