Introduction to real-time systems
Performance measures

Issues In real time computing

Task allocation and scheduling techniques
Power and energy Issues

Communication algorithms

Fault tolerance and reliability evaluation
Clock synchronization

What is a real-time system?
General characteristics
Hard and soft real-time systems
Performance Measures
Why are they important?
For general-purpose systems
For real-time systems

Uniprocessor task scheduling

Any system in which a deadline plays a central
role in its perceived performance

But timely response is important for general-purpose
systems, too!

There i1s no hard-and-fast demarcation between a real-
time system and a general-purpose system

Systems in the control loop are always real-time

Introduction to Real-Time Systems

What Is a Real-Time System?

Is defined as a system in which the time where the outputs are
produced is significant (within specified bounds or

deadlines)

Sensor Data

Commands

RTS

Actuator Outputs

Displays

Correctness depends on output values and the time at which
the Inputs are processed and the outputs are produced

Introduction to Real Time systems

Hard KT svstems Soft KT svstems

[=<\

Periodic Aperiodic
non
L pr& l:l‘i-’E e preempiive

uni-processor parallel processors

Typical Real-Time System

Operator Interface Controlled System

y

“— Sensor je—

— sensor |«
Controlling - sensor :
.| Environment
System | | ~[acfuator —
~_actuator -

—————L_actuator

—T—__actuator |—

Hard Real-Time Systems

Missing a deadline (or series of deadlines) can cause a
significant loss to the application.

Examples: Fly-by-wire, power-plant, and grid control

Soft Real-Time Systems

Missing a deadline causes the quality of service to
degrade, but nothing terrible happens

Examples: Video-on-demand, teleconferencing

Used initially in military aircraft

Dynamics time-constants are too small for humans to
be effective controllers
Philosophy:
Pilot sets policy
Computer carries out low-level actions to implement that
policy
If too many deadlines are missed in a row, the aircraft
can crash

€£e

SENSORS,
GROUND
COMMUNICATION
AND I/0
PERIPHERALS

SENSOR &

1/0 PROCESSORS
+A/D CONVERSIONS
*BUFFERING
*FORMATTING
«BROADCASTING

CONTROLLER ot

ACTUATOR &
DISPLAY
PROCESSORS

+D/A CONVERSION
«BUFFERING
sCHECKING

ACTUATORS

AIRCRAFT
DYNAMICS

sl

 —

PILOT

DISPLAY

(From C. M. Krishna & K. G. Shin: NASA Con. Report 3807, 1984)

CEFLECTION IRROH

Elevator Deflections D ring Landing

DEFLECTLON (8RO

803 12283 15.02
TINE (SECH

{(b) ¢ = 40 msec.

8.00 12,02 16.co 8.00 12.ca
TINE ISECH FINE (SEC

(c) ¢ = S0 msec. (d) £ = 60 msec.

Real time response

Recovering from failures

Working with distributed architecture
Asynchronous communication

Race conditions and timing

PB-based Fault-Tolerance

Space exclusion - primary and backup scheduled on two
different processors.

Time exclusion - primary and backup should not overlap
In execution.

Variants of PB-based Scheduling
PB-Exclusive - Both time and space exclusion
PB-Concurrent - Space exclusion, but concurrent execution
PB-Overlap - Space exclusion, but overlap in execution

 PB-

P3

Each of the above three schemes has merits under certain
workload and fault scenarios.
PB-Concurrent: at high fault rates, tight deadlines

PB-exclusive: at low fault rates, relaxed deadlines, high resource
needs

Generalized scheme

That adapts (estimating) the “primary-backup overlap interval”
based on task parameters (e.g., deadline) and fault rate has the

potential to offer the best schedulability under all scenarios.

Too much redundancy increases reliability, but it could
potentially decrease the schedulability.

Too little redundancy decreases reliability, but increases
schedulability

Also, designing and managing redundancy incurs
additional cost, time, space, and power consumption

Therefore, appropriate use of redundancy is important

Backup overloading

Two backups can be scheduled in a overlapping manner if their
primaries achieve space exclusion.

Assumes, at most only one fault at a given time, i.e., before the
second fault, the first fault is recovered.

Flexible overloading (static-grouping)
Partition the processors into groups
Schedule the primary and its backup in the same group

If primary is scheduled in group 1, its backup must also be scheduled
In the group exploiting the backup overloading

Space
exclusi

P1

P4

Backups
scheduled

P2

B3

In flexible overloading, all “m” processors are partitioned
Into different groups

Rules
Every processor is a member of exactly one group

For backup overloading to take place in a group, it must
have at least three processors

The size of each group is the same (except for one
group, when (m/gsize) is not an integer)

4 p
P1 Backup

overload

P2

Ing
(B2 the

group -~

<
Backup
P3 overload

Ing
A /W
B4 the

B3 group

Distance concept - the relative position of a primary task
and its backup task in the task queue

For a given set of “N” active tasks and a given distance of
6€d79
For all tasks, T
Distance (Pr;, Bk;) is equal to

for the tasks
for the tasks

oN:4
d=3

Pl

P2

P3

Bl

B2

B3

P4

B4

*N
°d

=4
=2

P1

P2

Bl

B2

P3

P4

B3

B4

Backup postponement

If backup task is too closer (in gueue position) relative to its
primary, holes get created in the schedule, resulting in lower
schedulability.

Forced backtrack

If backup task is too far (in queue position) relative to its
primary, missing the deadlines of backup could happen which
would result in backtrack.

Which is better? High schedulability or high relaibility
Overall system metric is required

Performability metrics combine schedulability and
reliability into a single metric that captures the overall
system goal

Goal: Determining Redundancy level to maximize the
performance index (PI)

Performance index (PI) is a measure that captures both performance and
reliability requirements

Pl is defined as follows: For a task Ti,

Pl. = V,*R-P; * F, If T; Is guaranteed

-Qj if T.is _guaranteed

Where,
Vi =reward if Ti completes successfully
Ri = reliability of a task (1 - Fi)
Fi = Failure probability
Pi = penalty if Ti fails after being guaranteed
Qi = if Ti has not been guaranteed

Goal:

Given the relevant parameters for each of the “n” tasks to
be scheduled on a set of “m” processors, the goal is to
determine the appropriate redundancy levels for each

task in order to maximize the total Pl.

Let Ri be the reliability of the task with one version, the
reliability of the task with “n” versions 1s given by

1-(1-Ri)"

maximum

atu = 2.

Therefore,
Pl =Y Pl \a

4(10*0.9-100*0.1)=-4 redy

-
-

2(10 * 0.99 — 100 * 0.01) - 2 = 1€

1(10*0.999 -100*0.001)-3 =7

W |IN|FP|C

1(10 *0.9999 — 100 * 0.0001) -3 =7

Dependability concepts
Fault-tolerant design techniques

Fault-tolerant scheduling
Primary-backup scheduling
Schedulability enhancement techniques
Redundancy level determination

Traditional Measures

Throughput: Average number of instructions processed
per second

Availability: Fraction of time for which the system is
up

Reliability: Probability that the system will remain up
throughout a designated interval

Performability
Published by John Meyer in 1980
Identify , {A0, A1, A2, ..., An},
for the application

Determine the probability, P(Al), that the real-time
system will be able to perform in such a way that Al

will be accomplished
Performability 1s the vector (P(A0), P(Al), ..., P(An))
Application-focused measure

How to assign tasks to processors and to schedule
them in such a way that deadlines are met

Our initial focus: uniprocessor task scheduling

Initial Assumptions:
Each task Is periodic
Periods of different tasks may be different
Worst-case task execution times are known
Relative deadline of a task is equal to its period
No dependencies between tasks: they are independent
Only resource constraint considered is execution time
No critical sections
Preemption costs are negligible
Tasks must be completed for output to have any value

Rate-Monotonic (RM) Algorithm:
Static priority
Higher-frequency tasks have higher priority

Earliest-Deadline First (EDF) Algorithm:
Dynamic priority
Task with the earliest absolute deadline has highest
priority

Example

Schedulability criteria:
Sufficiency condition (Liu & Layland, 1973)

Necessary & sufficient conditions (Joseph & Pandya,
1986; Lehoczky, Sha, Ding 1989)

