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Today’s Topics 

 What is a real-time system? 

» General characteristics 

» Hard and soft real-time systems 

 Performance Measures 

» Why are they important? 

» For general-purpose systems 

» For real-time systems 

 Uniprocessor task scheduling 

 

 



What is a Real-Time System? 

 Any system in which a deadline plays a central 

role in its perceived performance 

» But timely response is important for general-purpose 

systems, too! 

» There is no hard-and-fast demarcation between a real-

time system and a general-purpose system 

» Systems in the control loop are always real-time 



Introduction to Real-Time Systems 

What is a Real-Time System? 

Is defined as a system in which the time where the outputs are 

produced is significant (within specified bounds or 

deadlines) 

.  
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Types of RTS 

 Hard Real-Time Systems 

» Missing a deadline (or series of deadlines) can cause a 

significant loss to the application. 

» Examples: Fly-by-wire, power-plant, and grid control 

 Soft Real-Time Systems 

» Missing a deadline causes the quality of service to 

degrade, but nothing terrible happens 

» Examples: Video-on-demand, teleconferencing 



Example: Fly-by-wire 

 Used initially in military aircraft 

» Dynamics time-constants are too small for humans to 

be effective controllers 

» Philosophy:  

 Pilot sets policy 

 Computer carries out low-level actions to implement that 

policy 

» If too many deadlines are missed in a row, the aircraft 

can crash 



Feedback Loop 

(From C. M. Krishna & K. G. Shin: NASA Con. Report 3807, 1984) 



Impact of Feedback Delay 

(Simulation Example) 
Elevator Deflections During Landing 



Issues in real time computing 

 Real time response 

 Recovering from failures 

 Working with distributed architecture 

 Asynchronous communication 

 Race conditions and timing 



Scheduling RT Tasks with FT Requirement 

PB-based Fault-Tolerance 

 

 Space exclusion – primary and backup scheduled on two 

different processors. 

 

 Time exclusion – primary and backup should not overlap 

in execution. 

Variants of PB-based Scheduling 

» PB-Exclusive – Both time and space exclusion 

» PB-Concurrent – Space exclusion, but concurrent execution 

» PB-Overlap – Space exclusion, but overlap in execution 



Variants of PB-scheduling: Example 

B1 

P2 

Process

or#1 

B2 

Process

or#2 

Process

or#3 

P1 P3 
Process

or#0 

B3 

PB-

OVERLAP 

PB-

CONCURRENT 

PB-EXCLUSIVE 



Scheduling RT Tasks with FT Req. (contd.) 

 Each of the above three schemes has merits under certain 

workload and fault scenarios. 

» PB-Concurrent: at high fault rates, tight deadlines 

» PB-exclusive: at low fault rates, relaxed deadlines, high resource 

needs 

 

 Generalized scheme 

» That adapts (estimating) the “primary-backup overlap interval” 
based on task parameters (e.g., deadline) and fault rate has the 

potential to offer the best schedulability under all scenarios. 

 

 

 



Schedulability-Reliability Tradeoff 

 

 Too much redundancy increases reliability, but it could 

potentially decrease the schedulability. 

 

 Too little redundancy decreases reliability, but increases 

schedulability 

 

 Also, designing and managing redundancy incurs 

additional cost, time, space, and power consumption 

 

 Therefore, appropriate use of redundancy is important 

 



Schedulability Enhancement Techniques in PB-based FT 

scheduling 

 Backup overloading  

» Two backups can be scheduled in a overlapping manner if their 
primaries achieve space exclusion. 

» Assumes, at most only one fault at a given time, i.e., before the 
second fault, the first fault is recovered. 

 

 Flexible overloading (static-grouping) 

» Partition the processors into groups 

» Schedule the primary and its backup in the same group 

 If primary is scheduled in group 1, its backup must also be scheduled 
in the group exploiting the backup overloading 

 



Backup overloading: example 
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Flexible overloading- details 

 In flexible overloading, all “m” processors are partitioned 
into different groups 

 

 Rules 
» Every processor is a member of exactly one group 

 

» For backup overloading to take place in a group, it must 
have at least three processors 

 

» The size of each group  is the same (except for one 
group, when (m/gsize) is not an integer) 

 



Flexible overloading: example 
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Distance concept: details 

 

 Distance concept – the relative position of a primary task 

and its backup task in the task queue 

 

 For a given set of “N” active tasks and a given distance of 

“d” 

For all tasks, Ti 

» Distance (Pri, Bki) is equal to 

 d for the (N – (N mod d)) tasks 

 N mod d for the (N mod d) tasks  

 



Distance concept: example 

P1 P2 P3 B1 B2 B3 P4 B4 

•N= 4 

•d = 3 

P1 P2 B1 B2 P3 P4 B3 B4 

•N= 4 

•d = 2 

The distance concept 

introduces a tradeoff between 

performance and fault 

tolerance in the myopic 

algorithm. 

Distance should be 

appropriately chosen. The 

distance should be neither too 

low nor too high 



Distance – some implications 

 

» Backup postponement  

 If backup task is too closer (in queue position) relative to its 
primary, holes get created in the schedule, resulting in lower 
schedulability. 

 

» Forced backtrack 

 If backup task is too far (in queue position) relative to its 
primary, missing the deadlines of backup could happen which 
would result in backtrack. 

 



Performability measures 

 Which is better? High schedulability or high relaibility 

  

 Overall system metric is required 

 

 Performability metrics combine schedulability and 

reliability into a single metric that captures the overall 

system goal 

 

 Goal: Determining Redundancy level to maximize the 

performance index (PI) 



Determining Redundancy Levels (contd.) 

 Performance index (PI) is a measure that captures both performance and 
reliability requirements 

 
 PI is defined as follows: For a task Ti, 

 

 

PIi =           Vi * Ri – Pi * Fi   if Ti is guaranteed 

 

     -Qi          if Ti is not guaranteed 
 

Where, 
Vi = reward if Ti completes successfully 

Ri = reliability of a task (1 – Fi) 

Fi = Failure probability 

Pi = penalty if Ti fails after being guaranteed 

Qi = if Ti has not been guaranteed 

 



Determining Redundancy Levels 

 Goal: 

 

Given the relevant parameters for each of the “n” tasks to 

be scheduled on a set of “m” processors, the goal is to 

determine the appropriate redundancy levels for each 

task in order to maximize the total PI. 

 

 Let Ri be the reliability of the task with one version, the 

reliability of the task with “n” versions is given by 

 1 – (1 - Ri)n  



Determining Redundancy Levels: example 

Task (Ti) Task attributes Penalty/reward 

T1, T2, T3, T4 Ri = 0, Ci = 10,  

Di = 10 

Vi = 10, Pi = 100, 

Qi = 1 

U PI = ∑ PIi 

1 4 ( 10 * 0.9 – 100 * 0.1) = -4 

2 2(10 * 0.99 – 100 * 0.01) - 2 = 16 

3 1(10 * 0.999 – 100 * 0.001) – 3 = 7 

4 1(10 *0.9999 – 100 * 0.0001) – 3 = 7 

Calculations 

Given task-set 

U: redundancy level 

PI is 

maximum 

at u = 2. 

Therefore, 

a 

redundancy 

level of 2 is 

optimal 



Fault-tolerance -- conclusions 

 Dependability concepts 

 Fault-tolerant design techniques 

 

 Fault-tolerant scheduling 

» Primary-backup scheduling 

» Schedulability enhancement techniques 

» Redundancy level determination 

 



Performance Measures 

 Traditional Measures 

» Throughput: Average number of instructions processed 

per second 

» Availability: Fraction of time for which the system is 

up 

» Reliability: Probability that the system will remain up 

throughout a designated interval 



Special-Purpose Measure 

 Performability 

» Published by John Meyer in 1980 

» Identify accomplishment levels, {A0, A1, A2, …, An}, 

 for the application 

» Determine the probability, P(Ai), that the real-time 

system will be able to perform in such a way that Ai 

will be accomplished 

» Performability is the vector (P(A0), P(A1), …, P(An)) 

» Application-focused measure 



Task Allocation and Scheduling 

 How to assign tasks to processors and to schedule 

them in such a way that deadlines are met 

 Our initial focus: uniprocessor task scheduling 



Uniprocessor Task Scheduling 

 Initial Assumptions: 

» Each task is periodic 

» Periods of different tasks may be different 

» Worst-case task execution times are known 

» Relative deadline of a task is equal to its period 

» No dependencies between tasks: they are independent 

» Only resource constraint considered is execution time 

» No critical sections 

» Preemption costs are negligible 

» Tasks must be completed for output to have any value 



Standard Scheduling Algorithms 

 Rate-Monotonic (RM) Algorithm: 

» Static priority 

» Higher-frequency tasks have higher priority 

 Earliest-Deadline First (EDF) Algorithm: 

» Dynamic priority 

» Task with the earliest absolute deadline has highest 

priority 



Rate Monotonic Algorithm 

 Example 

 Schedulability criteria: 

» Sufficiency condition (Liu & Layland, 1973) 

» Necessary & sufficient conditions (Joseph & Pandya, 

1986; Lehoczky, Sha, Ding 1989) 

 


