
Coverage 

 Introduction to real-time systems 

 Performance measures 

 Issues in real time computing 

 Task allocation and scheduling techniques 

 Power and energy issues 

 Communication algorithms 

 Fault tolerance and reliability evaluation 

 Clock synchronization 



Today’s Topics 

 What is a real-time system? 

» General characteristics 

» Hard and soft real-time systems 

 Performance Measures 

» Why are they important? 

» For general-purpose systems 

» For real-time systems 

 Uniprocessor task scheduling 

 

 



What is a Real-Time System? 

 Any system in which a deadline plays a central 

role in its perceived performance 

» But timely response is important for general-purpose 

systems, too! 

» There is no hard-and-fast demarcation between a real-

time system and a general-purpose system 

» Systems in the control loop are always real-time 



Introduction to Real-Time Systems 

What is a Real-Time System? 

Is defined as a system in which the time where the outputs are 

produced is significant (within specified bounds or 

deadlines) 

.  

 

 

 
 

 

RTS 
Sensor Data 

Commands 

Actuator Outputs 

Displays 

Correctness depends on output values and the time at which 

 the inputs are processed and the outputs are produced  





Typical Real-Time System 

Controlling  

System 
Environment 

sensor 

sensor 

sensor 

sensor 

actuator 

actuator 

actuator 

actuator 

Controlled System Operator Interface 



Types of RTS 

 Hard Real-Time Systems 

» Missing a deadline (or series of deadlines) can cause a 

significant loss to the application. 

» Examples: Fly-by-wire, power-plant, and grid control 

 Soft Real-Time Systems 

» Missing a deadline causes the quality of service to 

degrade, but nothing terrible happens 

» Examples: Video-on-demand, teleconferencing 



Example: Fly-by-wire 

 Used initially in military aircraft 

» Dynamics time-constants are too small for humans to 

be effective controllers 

» Philosophy:  

 Pilot sets policy 

 Computer carries out low-level actions to implement that 

policy 

» If too many deadlines are missed in a row, the aircraft 

can crash 



Feedback Loop 

(From C. M. Krishna & K. G. Shin: NASA Con. Report 3807, 1984) 



Impact of Feedback Delay 

(Simulation Example) 
Elevator Deflections During Landing 



Issues in real time computing 

 Real time response 

 Recovering from failures 

 Working with distributed architecture 

 Asynchronous communication 

 Race conditions and timing 



Scheduling RT Tasks with FT Requirement 

PB-based Fault-Tolerance 

 

 Space exclusion – primary and backup scheduled on two 

different processors. 

 

 Time exclusion – primary and backup should not overlap 

in execution. 

Variants of PB-based Scheduling 

» PB-Exclusive – Both time and space exclusion 

» PB-Concurrent – Space exclusion, but concurrent execution 

» PB-Overlap – Space exclusion, but overlap in execution 



Variants of PB-scheduling: Example 

B1 

P2 

Process

or#1 

B2 

Process

or#2 

Process

or#3 

P1 P3 
Process

or#0 

B3 

PB-

OVERLAP 

PB-

CONCURRENT 

PB-EXCLUSIVE 



Scheduling RT Tasks with FT Req. (contd.) 

 Each of the above three schemes has merits under certain 

workload and fault scenarios. 

» PB-Concurrent: at high fault rates, tight deadlines 

» PB-exclusive: at low fault rates, relaxed deadlines, high resource 

needs 

 

 Generalized scheme 

» That adapts (estimating) the “primary-backup overlap interval” 
based on task parameters (e.g., deadline) and fault rate has the 

potential to offer the best schedulability under all scenarios. 

 

 

 



Schedulability-Reliability Tradeoff 

 

 Too much redundancy increases reliability, but it could 

potentially decrease the schedulability. 

 

 Too little redundancy decreases reliability, but increases 

schedulability 

 

 Also, designing and managing redundancy incurs 

additional cost, time, space, and power consumption 

 

 Therefore, appropriate use of redundancy is important 

 



Schedulability Enhancement Techniques in PB-based FT 

scheduling 

 Backup overloading  

» Two backups can be scheduled in a overlapping manner if their 
primaries achieve space exclusion. 

» Assumes, at most only one fault at a given time, i.e., before the 
second fault, the first fault is recovered. 

 

 Flexible overloading (static-grouping) 

» Partition the processors into groups 

» Schedule the primary and its backup in the same group 

 If primary is scheduled in group 1, its backup must also be scheduled 
in the group exploiting the backup overloading 

 



Backup overloading: example 

B1 

P2 

B2 

Process

or#1 

Process

or#2 

P1 Process

or#0 

Space 

exclusi

ve 

primar

ies 
Backups 

scheduled 

in 

overlapping 

manner on 

the same 

processor 

P3 

B3 

P4 

P4 



Flexible overloading- details 

 In flexible overloading, all “m” processors are partitioned 
into different groups 

 

 Rules 
» Every processor is a member of exactly one group 

 

» For backup overloading to take place in a group, it must 
have at least three processors 

 

» The size of each group  is the same (except for one 
group, when (m/gsize) is not an integer) 

 



Flexible overloading: example 

Process

or#1 

P1 Process

or#0 
P2 

B1 

Process

or#2 

B2 

Process

or#4 

P3 Process

or#3 
P4 

Process

or#5 

B3 
B4 

Backup 

overload

ing 

within 

the 

group 
Backup 

overload

ing 

within 

the 

group 



Distance concept: details 

 

 Distance concept – the relative position of a primary task 

and its backup task in the task queue 

 

 For a given set of “N” active tasks and a given distance of 

“d” 

For all tasks, Ti 

» Distance (Pri, Bki) is equal to 

 d for the (N – (N mod d)) tasks 

 N mod d for the (N mod d) tasks  

 



Distance concept: example 

P1 P2 P3 B1 B2 B3 P4 B4 

•N= 4 

•d = 3 

P1 P2 B1 B2 P3 P4 B3 B4 

•N= 4 

•d = 2 

The distance concept 

introduces a tradeoff between 

performance and fault 

tolerance in the myopic 

algorithm. 

Distance should be 

appropriately chosen. The 

distance should be neither too 

low nor too high 



Distance – some implications 

 

» Backup postponement  

 If backup task is too closer (in queue position) relative to its 
primary, holes get created in the schedule, resulting in lower 
schedulability. 

 

» Forced backtrack 

 If backup task is too far (in queue position) relative to its 
primary, missing the deadlines of backup could happen which 
would result in backtrack. 

 



Performability measures 

 Which is better? High schedulability or high relaibility 

  

 Overall system metric is required 

 

 Performability metrics combine schedulability and 

reliability into a single metric that captures the overall 

system goal 

 

 Goal: Determining Redundancy level to maximize the 

performance index (PI) 



Determining Redundancy Levels (contd.) 

 Performance index (PI) is a measure that captures both performance and 
reliability requirements 

 
 PI is defined as follows: For a task Ti, 

 

 

PIi =           Vi * Ri – Pi * Fi   if Ti is guaranteed 

 

     -Qi          if Ti is not guaranteed 
 

Where, 
Vi = reward if Ti completes successfully 

Ri = reliability of a task (1 – Fi) 

Fi = Failure probability 

Pi = penalty if Ti fails after being guaranteed 

Qi = if Ti has not been guaranteed 

 



Determining Redundancy Levels 

 Goal: 

 

Given the relevant parameters for each of the “n” tasks to 

be scheduled on a set of “m” processors, the goal is to 

determine the appropriate redundancy levels for each 

task in order to maximize the total PI. 

 

 Let Ri be the reliability of the task with one version, the 

reliability of the task with “n” versions is given by 

 1 – (1 - Ri)n  



Determining Redundancy Levels: example 

Task (Ti) Task attributes Penalty/reward 

T1, T2, T3, T4 Ri = 0, Ci = 10,  

Di = 10 

Vi = 10, Pi = 100, 

Qi = 1 

U PI = ∑ PIi 

1 4 ( 10 * 0.9 – 100 * 0.1) = -4 

2 2(10 * 0.99 – 100 * 0.01) - 2 = 16 

3 1(10 * 0.999 – 100 * 0.001) – 3 = 7 

4 1(10 *0.9999 – 100 * 0.0001) – 3 = 7 

Calculations 

Given task-set 

U: redundancy level 

PI is 

maximum 

at u = 2. 

Therefore, 

a 

redundancy 

level of 2 is 

optimal 



Fault-tolerance -- conclusions 

 Dependability concepts 

 Fault-tolerant design techniques 

 

 Fault-tolerant scheduling 

» Primary-backup scheduling 

» Schedulability enhancement techniques 

» Redundancy level determination 

 



Performance Measures 

 Traditional Measures 

» Throughput: Average number of instructions processed 

per second 

» Availability: Fraction of time for which the system is 

up 

» Reliability: Probability that the system will remain up 

throughout a designated interval 



Special-Purpose Measure 

 Performability 

» Published by John Meyer in 1980 

» Identify accomplishment levels, {A0, A1, A2, …, An}, 

 for the application 

» Determine the probability, P(Ai), that the real-time 

system will be able to perform in such a way that Ai 

will be accomplished 

» Performability is the vector (P(A0), P(A1), …, P(An)) 

» Application-focused measure 



Task Allocation and Scheduling 

 How to assign tasks to processors and to schedule 

them in such a way that deadlines are met 

 Our initial focus: uniprocessor task scheduling 



Uniprocessor Task Scheduling 

 Initial Assumptions: 

» Each task is periodic 

» Periods of different tasks may be different 

» Worst-case task execution times are known 

» Relative deadline of a task is equal to its period 

» No dependencies between tasks: they are independent 

» Only resource constraint considered is execution time 

» No critical sections 

» Preemption costs are negligible 

» Tasks must be completed for output to have any value 



Standard Scheduling Algorithms 

 Rate-Monotonic (RM) Algorithm: 

» Static priority 

» Higher-frequency tasks have higher priority 

 Earliest-Deadline First (EDF) Algorithm: 

» Dynamic priority 

» Task with the earliest absolute deadline has highest 

priority 



Rate Monotonic Algorithm 

 Example 

 Schedulability criteria: 

» Sufficiency condition (Liu & Layland, 1973) 

» Necessary & sufficient conditions (Joseph & Pandya, 

1986; Lehoczky, Sha, Ding 1989) 

 


